Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.414
Filtrar
1.
Rev Assoc Med Bras (1992) ; 70(1): e20230263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511748

RESUMO

OBJECTIVE: Diet and exercise, which are the building blocks of obesity management, provide weight loss by creating a negative energy balance. However, the effect of energy deficit induced by long-term diet and exercise on appetite hormones remains unclear. The study was designed to determine the effect of a 12-week diet and exercise program applied to obese individuals on the levels of appetite hormones, namely, ghrelin, GLP-1, and PYY. METHODS: A total of 62 obese individuals (BMI≥30) and 48 healthy controls (BMI 18.50-29.99) participated in the study. Appropriate diet (1000-1500 kcal/day) and exercise (at least 5000 steps/day) programs were applied to obese individuals according to age, gender, and BMI. The ghrelin, GLP-1, and PYY values of the participants were analyzed by the ELISA method and commercial kit by taking venous blood samples before and after 12 weeks of treatment. RESULTS: While ghrelin levels of individuals decreased significantly after diet and exercise, PYY levels increased significantly. However, despite the treatment applied, the GLP-1 and PYY levels of the case group did not reach the levels of the control group. CONCLUSION: Long-term diet and exercise intervention had a positive effect on appetite regulation hormones. It reduced ghrelin levels after treatment. Associated weight loss was facilitated. In the case group, increased satiety hormones after combined treatment supported the maintenance of body weight by increasing satiety.


Assuntos
Grelina , Peptídeo 1 Semelhante ao Glucagon , Humanos , Peptídeo YY , Obesidade/terapia , Redução de Peso/fisiologia , Dieta
2.
Nutr Diabetes ; 14(1): 9, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448413

RESUMO

BACKGROUND AND OBJECTIVE: Large intestinal fermentation of dietary fiber may control meal-related glycemia and appetite via the production of short-chain fatty acids (SCFA) and the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). We investigated whether this mechanism contributes to the efficacy of the Roux-en-Y gastric bypass (RYGB) by assessing the effect of oligofructose-enriched inulin (inulin) vs. maltodextrin (MDX) on breath hydrogen (a marker of intestinal fermentation), plasma SCFAs, gut hormones, insulin and blood glucose concentrations as well as appetite in RYGB patients. METHOD: Eight RYGB patients were studied on two occasions before and ~8 months after surgery using a cross-over design. Each patient received 300 ml orange juice containing 25 g inulin or an equicaloric load of 15.5 g MDX after an overnight fast followed by a fixed portion snack served 3 h postprandially. Blood samples were collected over 5 h and breath hydrogen measured as well as appetite assessed using visual analog scales. RESULTS: Surgery increased postprandial secretion of GLP-1 and PYY (P ≤ 0.05); lowered blood glucose and plasma insulin increments (P ≤ 0.05) and reduced appetite ratings in response to both inulin and MDX. The effect of inulin on breath hydrogen was accelerated after surgery with an increase that was earlier in onset (2.5 h vs. 3 h, P ≤ 0.05), but less pronounced in magnitude. There was, however, no effect of inulin on plasma SCFAs or plasma GLP-1 and PYY after the snack at 3 h, neither before nor after surgery. Interestingly, inulin appeared to further potentiate the early-phase glucose-lowering and second-meal (3-5 h) appetite-suppressive effect of surgery with the latter showing a strong correlation with early-phase breath hydrogen concentrations. CONCLUSION: RYGB surgery accelerates large intestinal fermentation of inulin, however, without measurable effects on plasma SCFAs or plasma GLP-1 and PYY. The glucose-lowering and appetite-suppressive effects of surgery appear to be potentiated with inulin.


Assuntos
Derivação Gástrica , Insulinas , Humanos , Inulina/farmacologia , Apetite , Projetos Piloto , Glicemia , Estudos Cross-Over , Estudos Prospectivos , Peptídeo YY , Peptídeo 1 Semelhante ao Glucagon , Percepção
3.
Mol Nutr Food Res ; 68(4): e2300086, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332571

RESUMO

SCOPE: Secretion of the gut hormones glucagon-like peptide (GLP-1) and peptide YY (PYY) are induced by nutrients reaching the lower small intestine which regulate insulin and glucagon release, inhibit appetite, and may improve ß-cell regeneration. The aim is to test the effect of a slowly digested isomaltulose (ISO) compared to the rapidly digested saccharose (SAC) as a snack given 1 h before a standardized mixed meal test (MMT) on GLP-1, PYY, glucose-dependent insulinotropic peptide (GIP), and metabolic responses in participants with or without type 2 diabetes (T2DM). METHODS AND RESULTS: Fifteen healthy volunteers and 15 patients with T2DM consumed either 50 g ISO or SAC 1 h preload of MMT on nonconsecutive days. Clinical parameters and incretin hormones are measured throughout the whole course of MMT. Administration of 50 g ISO as compared to SAC induced a significant increase in GLP-1, GIP, and PYY responses over 2 h after intake of a typical lunch in healthy controls. Patients with T2DM showed reduced overall responses of GLP-1 and delayed insulin release compared to controls while ISO significantly enhanced the GIP and almost tripled the PYY response compared to SAC. CONCLUSION: A snack containing ISO markedly enhances the release of the metabolically advantageous gut hormones PYY and GLP-1 and enhances GIP release in response to a subsequent complex meal.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Isomaltose/análogos & derivados , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Insulina/metabolismo , Polipeptídeo Inibidor Gástrico , Peptídeo YY , Glicemia/metabolismo
4.
Obes Rev ; 25(5): e13702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327045

RESUMO

A systematic search was conducted in Medline Ovid, Embase, Scopus, and Cochrane Central Register of Controlled Trials up until March 2021 following PRISMA guidelines. Studies included evaluated ghrelin, GLP-1, PYY or appetite sensation via visual analogue scales (VASs) before and after Roux-en-Y gastric bypass (RYGB) in adults. A multilevel model with random effects for study and follow-up time points nested in study was fit to the data. The model included kcal consumption as a covariate and time points as moderators. Among the 2559 articles identified, k = 47 were included, among which k = 19 evaluated ghrelin, k = 40 GLP-1, k = 22 PYY, and k = 8 appetite sensation. Our results indicate that fasting ghrelin levels are decreased 2 weeks post-RYGB (p = 0.005) but do not differ from baseline from 6 weeks to 1-year post-RYGB. Postprandial ghrelin and fasting GLP-1 levels were not different from pre-surgical values. Postprandial levels of GLP-1 increased significantly from 1 week (p < 0.001) to 2 years post-RYGB (p < 0.01) compared with pre-RYGB. Fasting PYY increased at 6 months (p = 0.034) and 1 year (p = 0.029) post-surgery; also, postprandial levels increased up to 1 year (p < 0.01). Insufficient data on appetite sensation were available to be meta-analyzed.


Assuntos
Derivação Gástrica , Obesidade Mórbida , Adulto , Humanos , Grelina , Obesidade Mórbida/cirurgia , Peptídeo YY , Peptídeo 1 Semelhante ao Glucagon
5.
Mol Metab ; 81: 101895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340808

RESUMO

Peptide YY (PYY3-36) is a post-prandially released gut hormone with potent appetite-reducing activity, the mechanism of action of which is not fully understood. Unravelling how this system physiologically regulates food intake may help unlock its therapeutic potential, whilst minimising unwanted effects. Here we demonstrate that germline and post-natal targeted knockdown of the PYY3-36 preferring receptor (neuropeptide Y (NPY) Y2 receptor (Y2R)) in the afferent vagus nerve is required for the appetite inhibitory effects of physiologically-released PYY3-36, but not peripherally administered pharmacological doses. Post-natal knockdown of the Y2R results in a transient body weight phenotype that is not evident in the germline model. Loss of vagal Y2R signalling also results in altered meal patterning associated with accelerated gastric emptying. These results are important for the design of PYY-based anti-obesity agents.


Assuntos
Hormônios Gastrointestinais , Peptídeo YY , Peptídeo YY/fisiologia , Apetite/fisiologia , Nervo Vago , Ingestão de Alimentos
6.
Appetite ; 196: 107286, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417533

RESUMO

Research on exercise-induced appetite suppression often does not include resistance training (RT) exercise and only compared matched volumes. PURPOSE: To compare the effects of low-load and high-load RT exercise completed to volitional fatigue on appetite-regulation. METHODS: 11 resistance-trained males (24 ± 2 y) completed 3 sessions in a crossover experimental design: 1) control (CTRL); 2) RT exercise at 30% 1-repetition maximum (RM); and 3) RT exercise at 90% 1-RM. RT sessions consisted of 3 sets of 5 exercises completed to volitional fatigue. Acylated ghrelin, active glucagon-like peptide-1 (GLP-1), active peptide tyrosine (PYY), lactate, and subjective appetite perceptions were measured pre-exercise, 0-, 60-, and 120-min post-exercise. Energy intake was recorded the day before, of, and after each session. RESULTS: Lactate was elevated following both 30% (0-, 60-, 120-min post-exercise) and 90% (0-, 60-min post-exercise; P < 0.001, d > 3.92) versus CTRL, with 30% greater than 90% (0-min post-exercise; P = 0.011, d = 1.14). Acylated ghrelin was suppressed by 30% (P < 0.007, d > 1.22) and 90% (P < 0.028, d > 0.096) post-exercise versus CTRL, and 30% suppressed concentrations versus 90% (60-min post-exercise; P = 0.032, d = 0.95). There was no effect on PYY (P > 0.171, ηp2 <0.149) though GLP-1 was greater at 60-min post-exercise in 90% (P = 0.052, d = 0.86) versus CTRL. Overall appetite was suppressed 0-min post-exercise following 30% and 90% versus CTRL (P < 0.013, d > 1.10) with no other differences (P > 0.279, d < 0.56). There were no differences in energy intake (P > 0.101, ηp2 <0.319). CONCLUSIONS: RT at low- and high-loads to volitional fatigue induced appetite suppression coinciding with changes in acylated ghrelin though limited effects on anorexigenic hormones or free-living energy intake were present.


Assuntos
Apetite , Treinamento de Força , Masculino , Humanos , Apetite/fisiologia , Grelina , Peptídeo YY , Regulação do Apetite/fisiologia , Peptídeo 1 Semelhante ao Glucagon , Ingestão de Energia/fisiologia , Ácido Láctico
7.
Sci Rep ; 14(1): 4188, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378702

RESUMO

Female athletes who endure intense training are at risk of developing the 'female athlete triad,' making energy intake management crucial. However, the fluctuations in estradiol and progesterone levels throughout the menstrual cycle present a challenge in maintaining consistent energy intake. This study aimed to uncover the underlying factors associated with appetite regulation linked to menstrual phases and exercise using proteomic approach. Five female athletes engaged in 60 min of bicycle exercise, followed by 90 min of rest, during both the follicular and luteal phases. Serum samples were collected before, during, and after exercise, and the serum proteome was analyzed using 2D-gel electrophoresis. A total of 511 spots were detected in the subjects' serum profiles, with significant decreases observed in haptoglobin during the luteal phase and complement component 3 during bicycle training. Unsupervised learning with a generalized estimating equation analysis showed that serum peptide YY (PYY), an appetite suppressor, significantly influenced the fluctuations of serum proteins induced by exercise (p < 0.05). Regression analysis demonstrated a positive correlation between PYY and serum IgM (R = 0.87), implying that the intestinal environment and the immune response in female athletes may contribute to appetite regulation.


Assuntos
Apetite , Proteômica , Humanos , Feminino , Apetite/fisiologia , Projetos Piloto , Progesterona , Ciclo Menstrual/fisiologia , Atletas , Peptídeo YY
8.
J Physiol Sci ; 74(1): 11, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368346

RESUMO

Many hormones act on the hypothalamus to control hunger and satiety through various pathways closely associated with several factors. When food is present in the gastro intestinal (GI) tract, enteroendocrine cells (EECs) emit satiety signals such as cholecystokinin (CCK), glucagon like peptide-1 (GLP-1) and peptide YY (PYY), which can then communicate with the vagus nerve to control food intake. More specifically, satiety has been shown to be particularly affected by the GLP-1 hormone and its receptor agonists that have lately been acknowledged as a promising way to reduce weight. In addition, there is increasing evidence that normal flora is also involved in the peripheral, central, and reward system that impact satiety. Moreover, neurologic pathways control satiety through neurotransmitters. In this review, we discuss the different roles of each of the GLP-1 hormone and its agonist, gut microbiomes, as well as neurotransmitters and their interconnected relation in the regulation of body's satiety homeostasis.


Assuntos
Colecistocinina , Peptídeo 1 Semelhante ao Glucagon , Colecistocinina/metabolismo , Peptídeo YY/metabolismo , Encéfalo/metabolismo , Neurotransmissores
10.
Gastroenterology ; 166(3): 437-449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995867

RESUMO

BACKGROUND & AIMS: RET tyrosine kinase is necessary for enteric nervous system development. Loss-of-function RET mutations cause Hirschsprung disease (HSCR), in which infants are born with aganglionic bowel. Despite surgical correction, patients with HSCR often experience chronic defecatory dysfunction and enterocolitis, suggesting that RET is important after development. To test this hypothesis, we determined the location of postnatal RET and its significance in gastrointestinal (GI) motility. METHODS: RetCFP/+ mice and human transcriptional profiling data were studied to identify the enteric neuronal and epithelial cells that express RET. To determine whether RET regulates gut motility in vivo, genetic, and pharmacologic approaches were used to disrupt RET in all RET-expressing cells, a subset of enteric neurons, or intestinal epithelial cells. RESULTS: Distinct subsets of enteric neurons and enteroendocrine cells expressed RET in the adult intestine. RET disruption in the epithelium, rather than in enteric neurons, slowed GI motility selectively in male mice. RET kinase inhibition phenocopied this effect. Most RET+ epithelial cells were either enterochromaffin cells that release serotonin or L-cells that release peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), both of which can alter motility. RET kinase inhibition exaggerated PYY and GLP-1 release in a nutrient-dependent manner without altering serotonin secretion in mice and human organoids. PYY receptor blockade rescued dysmotility in mice lacking epithelial RET. CONCLUSIONS: RET signaling normally limits nutrient-dependent peptide release from L-cells and this activity is necessary for normal intestinal motility in male mice. These effects could contribute to dysmotility in HSCR, which predominantly affects males, and uncovers a mechanism that could be targeted to treat post-prandial GI dysfunction.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Lactente , Humanos , Masculino , Camundongos , Animais , Peptídeo YY , Serotonina , Doença de Hirschsprung/genética , Células Enteroendócrinas , Intestino Delgado , Peptídeo 1 Semelhante ao Glucagon , Proteínas Proto-Oncogênicas c-ret/genética
11.
Neurogastroenterol Motil ; 36(1): e14695, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926943

RESUMO

BACKGROUND: Food intake is regulated by homeostatic and hedonic systems that interact in a complex neuro-hormonal network. Dysregulation in energy intake can lead to obesity (OB) or anorexia nervosa (AN). However, little is known about the neurohormonal response patterns to food intake in normal weight (NW), OB, and AN. MATERIAL & METHODS: During an ad libitum nutrient drink (Ensure®) test (NDT), participants underwent three pseudo-continuous arterial spin labeling (pCASL) MRI scans. The first scan was performed before starting the NDT after a > 12 h overnight fast (Hunger), the second after reaching maximal fullness (Satiation), and the third 30-min after satiation (postprandial fullness). We measured blood levels of ghrelin, cholecystokinin (CCK), glucagon-like peptide (GLP-1), and peptide YY (PYY) with every pCASL-MRI scan. Semiquantitative cerebral blood flow (CBF) maps in mL/100 gr brain/min were calculated and normalized (nCBF) with the CBF in the frontoparietal white matter. The hypothalamus (HT), nucleus accumbens [NAc] and dorsal striatum [DS] were selected as regions of interest (ROIs). RESULTS: A total of 53 participants, 7 with AN, 17 with NW (body-mass index [BMI] 18.5-24.9 kg/m2 ), and 29 with OB (BMI ≥30 kg/m2 ) completed the study. The NW group had a progressive decrease in all five ROIs during the three stages of food intake (hunger, satiation, and post-prandial fullness). In contrast, participants with OB showed a minimal change from hunger to postprandial fullness in all five ROIs. The AN group had a sustained nCBF in the HT and DS, from hunger to satiation, with a subsequent decrease in nCBF from satiation to postprandial fullness. All three groups had similar hormonal response patterns with a decrease in ghrelin, an increase in GLP-1 and PYY, and no change in CCK. CONCLUSION: Conditions of regulated (NW) and dysregulated (OB and AN) energy intake are associated with distinctive neurohormonal activity patterns in response to hunger, satiation, and postprandial fullness.


Assuntos
Anorexia Nervosa , Fome , Humanos , Fome/fisiologia , Grelina , Saciação/fisiologia , Obesidade , Peptídeo YY , Colecistocinina , Peptídeo 1 Semelhante ao Glucagon , Período Pós-Prandial/fisiologia
12.
Nutr Neurosci ; 27(1): 87-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36583502

RESUMO

Leptin is a tonic appetite-regulating hormone, which is integral for the long-term regulation of energy balance. The current evidence suggests that the typical orexigenic or anorexigenic response of many of these appetite-regulating hormones, most notably ghrelin and cholecystokinin (CCK), require leptin to function whereas glucagon-like peptide-1 (GLP-1) is required for leptin to function, and these responses are altered when leptin injection or gene therapy is administered in combination with these same hormones or respective agonists. The appetite-regulatory pathway is complex, thus peptide tyrosine tyrosine (PYY), brain-derived neurotrophic factor (BDNF), orexin-A (OXA), and amylin also maintain ties to leptin, however these are less well understood. While reviews to date have focused on the existing relationships between leptin and the various neuropeptide modulators of appetite within the central nervous system (CNS) or it's role in thermogenesis, no review paper has synthesised the information regarding the interactions between appetite-regulating hormones and how leptin as a chronic regulator of energy balance can influence the acute appetite-regulatory response. Current evidence suggests that potential relationships exist between leptin and the circulating peripheral appetite hormones ghrelin, GLP-1, CCK, OXA and amylin to exhibit either synergistic or opposing effects on appetite inhibition. Though more research is warranted, leptin appears to be integral in both energy intake and energy expenditure. More specifically, functional leptin receptors appear to play an essential role in these processes.


Assuntos
Grelina , Leptina , Grelina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Apetite , Ingestão de Energia , Peptídeo 1 Semelhante ao Glucagon , Peptídeo YY , Metabolismo Energético , Tirosina/metabolismo , Tirosina/farmacologia
13.
Ann Diagn Pathol ; 69: 152250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142627

RESUMO

Appendiceal neuroendocrine neoplasms (NENs) can present with various growth patterns including the traditional triad of histologic patterns-insular, trabecular and tubular. A small cluster pattern was also found in this study and the literature on this specific morphology is limited. In this study, we conducted a comprehensive review of appendiceal NENs from our institution over a ten-year period. Clinical and demographic data were obtained from medical records. Immunohistochemical stains were performed with antibodies specific for synaptophysin, chromogranin, INSM1, CD56, serotonin and peptide YY. The small cluster pattern was found in 29.4 % of all cases evaluated. The tumor cells in these cases were predominantly located at the distal tip of the appendix, associated with fibrous obliteration. These tumors were smaller in size and tended towards less advanced tumor stage, with reduced incidence of lymphovascular and/or perineural invasion. Chromogranin expression was identified in 76 % of these cases. There is a heterogeneous hormone profile with 46.7 % serotonin and 33.3 % peptide YY. In conclusion, the small cluster pattern NENs present with unique histological features and hormone expression profile. Among the various neuroendocrine markers, INSM1 showed superior diagnostic performance, with high sensitivity and minimal non-specific staining.


Assuntos
Neoplasias do Apêndice , Carcinoma Neuroendócrino , Neoplasias Intestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/patologia , Biomarcadores Tumorais/metabolismo , Cromograninas , Peptídeo YY , Serotonina , Proteínas Repressoras/metabolismo , Sensibilidade e Especificidade , Sinaptofisina/metabolismo , Neoplasias do Apêndice/diagnóstico , Carcinoma Neuroendócrino/patologia
14.
Obes Surg ; 34(2): 592-601, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159146

RESUMO

PURPOSE: Bariatric surgery remains the most efficient treatment to achieve a sustained weight loss. However, a large proportion of patients experience suboptimal weight loss (SWL). The exact mechanisms involved remain to be fully elucidated, but the homeostatic appetite control system seems to be involved. The aim of this study was, therefore, to compare the plasma concentration of gastrointestinal hormones, and appetite ratings, between those experiencing SWL and optimal weight loss (OWL) after Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS: Fifty participants from the Bariatric Surgery Observation Study (BAROBS) experiencing either SWL or OWL (< or ≥ 50% of excess weight loss (EWL), respectively) > 13 years post-RYGB were compared to 25 non-surgical controls. Plasma concentrations of acylated ghrelin (AG), total glucagon-like peptide-1 (GLP-1), total peptide YY (PYY), cholecystokinin (CCK), and subjective ratings of hunger, fullness, desire to eat (DTE), and prospective food consumption (PFC) were assessed in the fasting and postprandial (area under the curve (AUC)) states. RESULTS: Those experiencing OWL presented with higher basal AG and GLP-1 iAUC, and lower AG iAUC compared with SWL and controls. Additionally, both bariatric groups presented with higher PYY and CCK iAUC compared to controls. PFC tAUC was also lower in OWL compared to the SWL group. Total weight loss was positively correlated with GLP-1 tAUC and negatively correlated with fasting and tAUC DTE and PFC tAUC. CONCLUSIONS: SWL > 13 years post-RYGB is associated with lower basal ghrelin, as well as a weaker satiety response to a meal. Future studies should investigate the causality of these associations.


Assuntos
Derivação Gástrica , Obesidade Mórbida , Humanos , Apetite/fisiologia , Grelina , Obesidade Mórbida/cirurgia , Redução de Peso/fisiologia , Peptídeo YY , Peptídeo 1 Semelhante ao Glucagon , Colecistocinina
15.
Nutrients ; 15(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38140276

RESUMO

Enhancing the effectiveness of exercise for long-term body weight management and overall health benefits may be aided through complementary dietary strategies that help to control acute postexercise energy compensation. Inulin-type fructans (ITFs) have been shown to induce satiety through the modified secretion of appetite-regulating hormones. This study investigated the acute impact of oligofructose-enriched inulin (OI) consumption after exercise on objective and subjective measures of satiety and compensatory energy intake (EI). In a randomized crossover study, following the completion of a 45 min (65-70% VO2peak) evening exercise session, participants (BMI: 26.9 ± 3.5 kg/m2, Age: 26.8 ± 6.7 yrs) received one of two beverages: (1) sweetened milk (SM) or (2) sweetened milk + 20 g OI (SM+OI). Perceived measures of hunger were reduced in SM+OI relative to SM (p = 0.009). Within SM+OI, but not SM, plasma concentrations of GLP-1 and PYY were increased and acyl-ghrelin reduced from pre-exercise to postexercise. EI during the ad libitum breakfast in the morning postexercise tended to be lower in SM+OI (p = 0.087, d = 0.31). Gastrointestinal impacts of OI were apparent with increased ratings of flatulence (p = 0.026, d = 0.57) in participants the morning after the exercise session. Overall, the ingestion of a single dose of OI after an exercise session appears to induce subtle reductions in appetite, although the impact of these changes on acute and prolonged EI remains unclear.


Assuntos
Apetite , Inulina , Humanos , Adulto Jovem , Adulto , Apetite/fisiologia , Inulina/farmacologia , Estudos Cross-Over , Oligossacarídeos/farmacologia , Grelina , Ingestão de Energia/fisiologia , Peptídeo YY
16.
Obes Surg ; 33(11): 3373-3382, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783932

RESUMO

BACKGROUND: Glycemic control, after metabolic surgery, is achieved in two stages, initially with neuroendocrine alterations and in the long-term with sustainable weight loss. The resection of the gastric fundus, as the major site of ghrelin production, is probably related with optimized glucose regulation. The aim of the present study is to investigate whether the modification of laparoscopic Roux-en-Y gastric bypass (LRYGBP) with fundus resection offers superior glycemic control, compared to typical LRYGBP. MATERIALS AND METHODS: Participants were 24 patients with body mass index (BMI) ≥40kg/m2 and type II diabetes mellitus (T2DM), who were randomly assigned to undergo LRYGBP and LRYGBP with fundus resection (LRYGBP+FR). Gastrointestinal (GI) hormones [ghrelin, glucagon-like-peptide-1 (GLP-1), peptide-YY (PYY)] and glycemic parameters (glucose, insulin, HbA1c, C-peptide, insulinogenic index, HOMA-IR) were measured preoperatively, at 6 and 12 months during an oral glucose tolerance test (OGTT). RESULTS: Ninety-five percent of patients showed complete remission of T2DM after 12 months. LRYGBP+FR was not related with improved glycemic control, compared to LRYGBP. Ghrelin levels were not significantly reduced at 6 and 12 months after LRYGBP+FR. GLP-1 and PYY levels were remarkably increased postprandially in both groups at 6 and 12 months postoperatively (p<0.01). Patients who underwent LRYGBP+FR achieved a significantly lower BMI at 12 months in comparison to LRYGBP (p<0.05). CONCLUSION: Fundus resection is not associated with improved glycemic regulation, compared to typical LRYGBP and the significant decrease in BMI after LRYGBP+FR has to be further confirmed with longer follow-up.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Hormônios Gastrointestinais , Laparoscopia , Obesidade Mórbida , Humanos , Grelina , Obesidade Mórbida/cirurgia , Diabetes Mellitus Tipo 2/cirurgia , Hormônios Gastrointestinais/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo YY/metabolismo , Glucose
17.
Am J Clin Nutr ; 118(6): 1192-1201, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863431

RESUMO

BACKGROUND: Weight loss is associated with a disproportionate reduction in energy expenditure, along with increases in hunger feelings and ghrelin concentrations. These changes are presumed to be homeostatic mechanisms to counteract the energy deficit. The possibility that these 2 components of the energy balance equation are mechanistically linked has never been examined. OBJECTIVE: This study aimed to determine if the disproportionate reduction in resting metabolic rate (RMR) seen with weight loss is associated with changes in the plasma concentration of gastrointestinal hormones involved in appetite regulation and subjective appetite ratings. METHODS: This was a longitudinal study with repeated measurements. Fifty-six individuals with obesity (body mass index [BMI]: 34.5±0.5 kg/m2; age: 47±1 y; 26 males) underwent an 8 wk low-energy diet, followed by 4 wk of refeeding and weight stabilization. The RMR, respiratory quotient (RQ), body composition, plasma concentrations of ghrelin, glucagon-like peptide 1, peptide YY, cholecystokinin, insulin, and appetite ratings in the fasting and postprandial states were measured at baseline, Wk9 and 13. Metabolic adaptation was defined as significantly lower when measured versus the predicted RMR (pRMR) (from own regression model using baseline data). RESULTS: A 14.2±0.6 kg weight loss was seen at Wk9 and maintained at Wk13. RQ was significantly reduced at Wk9 (0.82±0.06 vs. 0.76±0.05, P< 0.001) but returned to baseline at Wk13. Metabolic adaptation was seen at Wk9, but not Wk13 (-341±58, P <0.001 and -75±72 kJ/d, P = 0.305, respectively). The larger the difference between measured and predicted RMR at both timepoints, the greater the increase in hunger, desire to eat, and composite appetite score (fasting and postprandial at Wk9, postprandial only at Wk13), even after adjusting for weight loss and RQ. CONCLUSION: A larger metabolic adaptation during weight loss is accompanied by a greater drive to eat. This might help explain the interindividual differences in weight loss outcomes to dietary interventions.


Assuntos
Apetite , Grelina , Masculino , Humanos , Pessoa de Meia-Idade , Apetite/fisiologia , Estudos Longitudinais , Redução de Peso/fisiologia , Obesidade/metabolismo , Peptídeo YY , Período Pós-Prandial/fisiologia
18.
Bioorg Chem ; 140: 106808, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666110

RESUMO

Peptide YY (PYY) is a gastrointestinal hormone consisting of 36 amino acids, that is predominantly secreted by intestinal l-cells. Originally extracted from pig intestines, it belongs to the pancreatic polypeptide (PP) family, but has functions distinct from those of PP and neuropeptide Y (NPY). PYY is a potential treatment for type 2 diabetes mellitus (T2DM) because of its ability to delay gastric emptying, reduce appetite, decrease weight, and lower blood glucose. However, the clinical use of PYY is limited because it is rapidly cleared by the kidneys and degraded by enzymes. In recent years, researchers have conducted various structural modifications, including amino acid substitution, PEGylation, lipidation, and fusion of PYY with other proteins to prolong its half-life and enhance its biological activity. This study presents an overview of the recent progress on PYY, including its physiological functions, metabolites and structure-activity relationships.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo YY , Animais , Suínos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Substituição de Aminoácidos , Aminoácidos
19.
Diabet Med ; 40(12): e15212, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638546

RESUMO

Glucagon-like peptide-1 (GLP-1)-based medication is now widely employed in the treatment of type 2 diabetes and obesity. Like other gut hormones, GLP-1 is released from eneteroendocrine cells after a meal and in this review, based on the Dorothy Hodgkin lecture delivered during the annual meeting of Diabetes UK in 2023, I argue that there is sufficient spare capacity of GLP-1 and other gut hormone expressing cells that could be recruited therapeutically. Years of research has revealed several receptors expressed in enteroendocrine cells that could be targeted to stimulate hormone release: although from this research it seems unlikely to find agents that selectively boost GLP-1, release of a mixture of hormones might be the more desirable outcome anyway, given the recent promising results of new peptides combining GLP1-receptor with other gut hormone receptor activation. Alternatively, the fact that GLP-1 and peptideYY (PYY) expressing cells are found in greater density in the ileum might be exploited by increasing the delivery of chyme to the distal small intestine.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo YY , Peptídeo 1 Semelhante ao Glucagon , Íleo , Polipeptídeo Inibidor Gástrico
20.
Peptides ; 169: 171091, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640265

RESUMO

Glucagon-like peptide 2 (GLP-2) is an important regulator of intestinal growth and function. In adherable mixed meals the macronutrient composition with the best potential for stimulating GLP-2 secretion is not known. We compared the effect of 3 iso-energetic meals, where approximately 60 % of the energy ratio was provided as either carbohydrate, fat, or protein, respectively, on the post-prandial endogenous GLP-2 secretion. The responses were compared to secretion profiles of peptide YY (PYY), and glucose-dependent insulinotropic peptide (GIP). Ten healthy subjects were admitted on three occasions, at least a week apart, after a night of fasting. In an open-label, crossover design, they were randomized to receive a high carbohydrate (HC), high fat (HF) or high protein (HP) meal. The meals were approximately ∼3.9 MJ. Venous blood was collected for 240 min, and plasma concentrations of GLP-2, GIP and PYY were measured with specific radioimmunoassays. Mean GLP-2 levels peaked already at 30 min for the HC meal, however the HP meal induced the highest mean GLP-2 peaking levels, resulting in significantly higher mean GLP-2 area under the curve (AUC) from baseline of 7279 pmol*min/L, 95 %-CI [6081;8477] compared to the HC meal: 4764 pmol*min/L, 95 %-CI [3498;6029], p = 0.020 and the HF meal: 4796 pmol*min/L, [3385;6207], p = 0.011. Findings were similar for the PYY. The HC meal provided a greater AUC for GIP compared to the HP- and HF meals. The HP meal was most effective with respect to stimulation of the postprandial GLP-2 and PYY secretion, whereas the HC meal was more effective for GIP.


Assuntos
Peptídeo 2 Semelhante ao Glucagon , Nutrientes , Humanos , Carboidratos , Polipeptídeo Inibidor Gástrico , Voluntários Saudáveis , Refeições , Peptídeo YY , Estudos Cross-Over
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...